

Science & Technology Facilities Council

Chemical modelling of formamide and methyl isocyanate in star-forming regions

David Quénard Post-Doctoral Research Assistant

Izaskun Jiménez-Serra (QMUL), Serena Viti (UCL), Jon Holdship (UCL), Audrey Coutens (LAB)

The search for pre-biotic species

The peptide bond: CO-NH

Important bond in biochemistry (link between two amino-acid)

Several species detected with a peptide-like bond (e.g. NH₂CHO, CH₃NCO) or a peptide bond (HNCO)

The search for pre-biotic species

Understand the chemistry of glycine precursors and COM-related species.

The search for pre-biotic species

Understand the chemistry of glycine precursors and COM-related species. Modelling of NH₂CHO, CH₃NCO, HNCO (& isomers)

UCL_CHEM (Viti et al. 2004; Holdship et al. 2017) https://uclchem.github.io/

Gas-phase + dust grain chemical code (364 species; 3446 reactions)

Recently proposed gas-phase/grain-surface reactions for HNCO and CH₃NCO (+ isomers)

= grain surface

Reactions	Reference	
Isocyanic Acid – HNCO/HOCN/HCNO		
Complex gas/grain network	Quan et al. (2010)	
$\#NH + \#CO \longrightarrow \#HNCO$	Fedoseev et al. (2015)	
Methyl Isocyanate – CH ₃ NCO		
$HNCO + CH_3 \longrightarrow CH_3NCO + H$	Halfen et al. (2015)	
$\#CH_3 + \#OCN \longrightarrow \#CH_3NCO$	Belloche et al. (2017) ; Ligterink et al. (2017)	
$#CH_3 + #HNCO \longrightarrow #CH_3NCO + #H$	Ligterink et al. (2017)	
$#CH_3 + #HNCO \longrightarrow #CH_4 + #OCN$	Ligterink et al. (2017)	
$\#CH_3NCO + \#H \longrightarrow \#CH_3NH + \#CO$	Ligterink et al., private communication	
	-	

Modelling of NH₂CHO, CH₃NCO, HNCO (& isomers)

Recently proposed gas-phase/grain-surface reactions for NH₂CHO

Reactions	Reference
$Formamide - NH_2CHO$	
$NH_2 + H_2CO \longrightarrow NH_2CHO + H$	Skouteris et al. (2017)
$\#\text{HNCO} + \#\text{H} \longrightarrow \#\text{NH}_2 + \#\text{CO}$	Song & Kästner (2016)
$\#HNCO + \#H \longrightarrow \#H_2NCO$	Song & Kästner (2016)
$#H_2NCO + #H \longrightarrow #NH_2CHO$	Song & Kästner (2016)
$#H_2NCO + #H \longrightarrow #HNCO + #H_2$	Noble et al. (2016)
$\#NH_2 + \#HCO \longrightarrow \#NH_2CHO$	Fedoseev et al. (2016)
$\#NH_2 + \#HCO \longrightarrow \#NH_3 + CO$	Fedoseev et al. (2016)
$\#NH_2 + \#H_2CO \longrightarrow \#NH_2CHO + \#H$	Fedoseev et al. (2016)
$\#NH_2 + \#H_2CO \longrightarrow \#NH_3 + \#HCO$	Fedoseev et al. (2016)
$#H_2NCO + #CH_3 \longrightarrow #CH_3CONH_2$	Belloche et al. (2017)
$\#NH_2CHO + \#OH \longrightarrow \#H_2NCO + \#H_2O$	Belloche et al. (2017)
$\#NH_2CHO + \#CH_2 \longrightarrow \#CH_3CONH_2$	Belloche et al. (2017)

COMs in the pre-stellar core L1544

O-bearing and N-bearing COMS are more abundant at r~4000 AU (methanol peak position) (Jiménez-Serra et al. 2016)

Important non-detections:

Core centre X [NH₂CHO] < 2.4x10⁻¹³ X [CH₃NCO] < 2.0x10⁻¹² Methanol peak X [NH₂CHO] < 6.7×10^{-13} X [CH₃NCO] < 6.0×10^{-12}

Chemical modelling by Vasyunin et al. (2017)

- Gas-phase + dust grain model of Vasyunin & Herbst (2013)
- Focused on the O-bearing COMs chemical modelling

Large discrepancy found for NH₂CHO: ~100 times higher

Bizzocchi et al. (2014)

N-bearing COMs chemical modelling in L1544

2-steps chemical modelling

Phase 0

→ Diffuse cloud step with n_H = 100 cm⁻³ and T=20 K.
 → Evolution of the chemistry for a few millions years.
 → Low A_V: no icy mantle formation but gas phase chemistry.

Phase 1

Collapse phase to n_H = 5x10⁶ cm⁻³ (core centre) and n_H = 4x10⁵ cm⁻³ (methanol peak) with T=10 K.
 Depletion of species onto grain surface

N-bearing COMs chemical modelling in IRAS16293

3-steps chemical modelling

Phase 0 Same as for L1544 (diffuse cloud phase)

Phase :

→ Collapse phase to n_H = 5x10⁸ cm⁻³ (hot corino) and n_H = 2x10⁶ cm⁻³ (cold envelope) with T=10 K.

Phase 2

Warm-up phase to 250 K (hot corino) and 20 K (cold envelope)
 Desorption of species from the grain mantle at high T !

NH₂CHO chemistry

Gas phase chemistry
Grain surface chemistry:

- Radical-radical reactions
- Hydrogenation

NH₂CHO chemistry

Gas phase chemistry Grain surface chemistry:

- Radical-radical reactions
- Hydrogenation

NH₂CHO chemistry

Gas phase chemistry

- Grain surface chemistry:
 - Radical-radical reactions
 - Hydrogenation

Modelling different physical regimes help to constrain the chemistry !

HNCO & H₂CO vs NH₂CHO

Mendoza et al. (2014) and Lopéz-Sepulcre et al. (2015): Observational correlation → Chemical correlation between the two?

Modelling of NH₂CHO (no hydrogenation from HNCO)
 → Physical (environmental) correlation depending mainly on the temperature that triggers different chemical processes.

Conclusions

Modelling of N-bearing COMs predicts abundances of NH₂CHO, CH₃NCO (and isomers), HNCO (and isomers) in L1544 and IRAS16293 B

L1544: core centre and methanol peak

IRAS16293 B: hot corino and cold envelope

Both gas-phase and grain-phase chemistry are needed to explain the observed abundances of NH₂CHO

 Hydrogenation of HNCO tend to overestimate the NH₂CHO abundance compared to radical-radical reactions

The observed correlation between HNCO and NH₂CHO may come from an environmental correlation (temperature) rather than a chemical correlation