

Tunneling of hydrogen transfer reactions on and in interstellar ices

Thanja Lamberts

Jan Meisner, Pradipta Samanta, Max Markmeyer, Andreas Köhn, Johannes Kästner

Interstellar surface chemistry

Accurate rate constants are needed as input for astrochemical models

Figure courtesy Ewine van Dishoeck

Quantum tunneling

University of Stuttgart Germany

Minimum energy path is not a good approximation to the tunneling path for thin barriers

Figure courtesy Meisner & Kästner ACIE (2016)

Rate constants including tunneling!

Instanton theory

Langer (1967), Miller (1975), Callan & Coleman (1977), Rommel et al. (2011), Kästner et al. (2014), Richardson (2016)

Typical approach

Alexander von Humboldt Stiftung/Foundation

Established by the European Commission

Surface approximations

Alexander von Humboldt Stiftung/Foundation

bliched by the Lucences Commission

Surface chemistry mechanisms

Bimolecular A adsorbed + gas-phase B Unimolecular both A and B adsorbed + diffusion

Competition with diffusion

Tunneled reactions: rate constants

Studied reactions: $H + C_2 H_2 \longrightarrow C_2 H_3$ $H + C_2 H_4 \longrightarrow C_2 H_2$ $HCOOH + H \longrightarrow HOCO + H_2$ $HCOOH + NH_2 \longrightarrow HOCO + NH_3$ $HCOOH + OH \longrightarrow HOCO + H_2O$ $CH_4 + OH \longrightarrow H_2O + CH_3$ $H + H_2O_2 \longrightarrow H_2O + OH$ $H_2 + OH \longrightarrow H_2O + H$ $H + H_2S \longrightarrow HS + H_2$

Within the framework of: Cometary chemical inventory

'Complex' organic molecule precurors

Water formation

Sulfur chemistry

Alexander von Humboldt Stiftung/Foundation

H. Kobayashi et al. (2017), Lamberts et al. (2016, 2017), Meisner et al. (2016, 2017), Markmeyer et al. in prep.

$H + H_2O_2$ Gas vs. Clusters (I)

DFT: MPW1B95 / MG3S

Lamberts et al. (2016)

Established by the European Comm

$H + H_2O_2$ Gas vs. Clusters (II)

$H + H_2O_2$ Clusters vs. Surface (I)

Alexander von Humboldt Stiftung/Foundation

Established by the European Commission

$H + H_2O_2$ Clusters vs. Surface (II)

Alexander von Humboldt Stiftung/Foundation

Luropean Research Counc

$H + H_2O_2$ Surface vs. Bulk (I)

DFT: MPW1B95 / MG3S FF: TIP3P

Lamberts et al. (2017)

$H + H_2O_2$ Surface vs. Bulk (II)

erc

H₂ + OH Surface (I)

DFT: BHLYP / def2-SVPD FF: TIP3P

Meisner et al. (2017)

Alexander von Humboldt Stiftung/Foundation

European Research Council Established by the European Commission

erc

H₂ + OH Surface (II)

Alexander von Humboldt Stiftung/Foundation

Established by the European Commission

H + H₂S Gas phase vs. Clusters (I)

DFT: MPWB1K / def2-TZVP

Lamberts et al. (2017) in prep.

Established by the European

Diffusion and binding energies?

Combination of activation and binding energy determines if a reaction is limited by diffusion: what about binding energy distributions?

Song et al. (2016, 2017), Senevirathne et al. (2017), Ásgeirsson et al. (2017)

Lessons learned

University of Stuttgart Germany

Water ice:

•

may impact on barrier height and width may decrease the barrier

Hydrogen bonds: restricted orientations

determine binding energy

- Binding energies: a large spread
- Rectangular barrier: often underestimates rate constants often results in error in the KIE

• Rate constants available for roughly a dozen reactions!

April Cooper Sonia Álvarez Barcia

Computational Chemistry Group Stuttgart Institut für Theoretische Chemie Stuttgart

University of Stuttgart Germany

Alexander von Humboldt Stiftung/Foundation

BWForCluster Justus

European Research Council

Established by the European Commission

646717 TUNNELCHEM

Lessons learned

University of Stuttgart Germany

Water ice:

•

may impact on barrier height and width may decrease the barrier

Hydrogen bonds: restricted orientations

determine binding energy

- Binding energies: a large spread
- Rectangular barrier: often underestimates rate constants often results in error in the KIE

• Rate constants available for roughly a dozen reactions!

In a nutshell

Imaginary F theory:
$$k \propto \text{Im}(F) = \frac{\text{Im}(Q)}{\text{Re}(Q)}$$

Transition state theory:
$$k \propto \frac{Q_{TS}}{Q_{RS}}$$

 $Q_{TS} = tr[e^{-\beta H}] = \oint Dx \ e^{-\frac{1}{\hbar}S_E[x]} \rightarrow$ path integral formulation

x that minimizes $S_E[x]$ is 'the instanton', discretized: P segments in 3N dimensions

This ring-polymer with k=k(T) can be seen as wrapped around the barrier

Deviations from the most-likely tunneling path: harmonic approximation

Langer (1967), Miller (1975), Callan & Coleman (1977), Rommel et al. (2011), Kästner et al. (2014), Richardson (2016)

Hydrogenation of H₂O₂

- Experiments show a kinetic isotope effect $H_2O_2 + H vs. H_2O_2 + D$ $D_2O_2 + H vs. D_2O_2 + D$
- In models

Rectangular barrier approximation Eckart barrier approximation

$$P_{\rm reac} \propto e^{-2a/\hbar \sqrt{2\mu E_{act}}}$$

Taquet et al. (2013), Oba et al. (2014)

Surface formation of water

Tielens & Hagen (1982), Hiraoka *et al.* (1998), Miyauchi *et al.* (2008), Ioppolo *et al.* (2008), (2010), Dulieu *et al.* (2010) Lamberts *et al.* (2013), Lamberts *et al.* (2014), Lamberts *et al.* (2016), Meisner *et al.* (2017), Lamberts *et al.* (2017)

European Research Council

erc

Benchmark

University of Stuttgart Germany

				Sal March Courses
Method	Reaction 1 H + H ₂ O ₂ \rightarrow H ₂ O + OH		Reaction 2 H + H ₂ O ₂ \rightarrow HO ₂ + H ₂	
	kJ/mol	Kelvin	kJ/mol	Kelvin
CCSD(T)-F12 / VTZ-F12	25.5	3070	39.4	4740
ic-MRCCSD(T) / cc-pVQZ ¹	24.9	2995	38.3	4605
Ellingson et al. (2007)	27.2	3260	41.4	4970
MPW1B95 / MG3S	26.5	3190	23.7	2845
M05-2X / MG3S	45.9	5520	39.7	4780
PWB6K / MG3S	35.9	4330	35.4	4260
B3LYP / MG3S	11.2	1350	8.1	970
B3LYP / def2-TZVPD	10.8	1300	7.3	880

Energies in kJ/mol and Kelvin, without ZPE corrections, no dispersion correction

Lamberts et al. (2016)

Kinetic Isotope Effect

	Instanton theory	Eckart Barrier	Rectangular Barrier		
Eley-Rideal / bimolecular	197	27	6945		
Langmuir-Hinshelwood / unimolecular	229	60	7033		

All KIE's calculated at 50 K

Experimental KIE = 30 at 15 K, but ... includes diffusion!

