Tunneling of hydrogen transfer reactions on and in interstellar ices

Thanja Lamberts
Jan Meisner, Pradipta Samanta, Max Markmeyer, Andreas Köhn, Johannes Kästner
Accurate rate constants are needed as input for astrochemical models.
Quantum tunneling

Minimum energy path is not a good approximation to the tunneling path for thin barriers

Figure courtesy Meisner & Kästner ACIE (2016)
Rate constants including tunneling!

Instanton theory

Typical approach

Benchmark DFT to CCSD(T)-F12
- Gas-phase reaction
- Interaction energies (dimers)

Energy profile (gas phase)
- Intrinsic reaction coordinate
- Encounter complex

Surface molecules
- Small clusters as test case
- QM/MM

Rate calculations
- Classical
- Eckart approximation
- Instanton theory
Surface approximations

- High concentration
- Activation energy
- Implicit surface model
- Restricted rotation
- Energy dissipation

\[\text{rot. } RS = Q_{\text{rot. } TS} \]
\[\sigma = 1 \]
Surface chemistry mechanisms

Bimolecular
A adsorbed
+ gas-phase B

Unimolecular
both A and B adsorbed
+ diffusion
Competition with diffusion

\[R_{LH} = P_{react} \cdot R_{diff} \]

\[= \frac{k_{react}}{k_{react} + k_{diff,A} + k_{diff,B}} \cdot \frac{k_{diff,A} + k_{diff,B}}{N_{sites}} \cdot n_A \cdot n_B \]
Tunneled reactions: rate constants

Studied reactions:

- \(\text{H} + \text{C}_2\text{H}_2 \rightarrow \text{C}_2\text{H}_3 \)
- \(\text{H} + \text{C}_2\text{H}_4 \rightarrow \text{C}_2\text{H}_3 \)
- \(\text{HCOOH} + \text{H} \rightarrow \text{HOCO} + \text{H}_2 \)
- \(\text{HCOOH} + \text{NH}_2 \rightarrow \text{HOCO} + \text{NH}_3 \)
- \(\text{HCOOH} + \text{OH} \rightarrow \text{HOCO} + \text{H}_2\text{O} \)
- \(\text{CH}_4 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{CH}_3 \)
- \(\text{H} + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{OH} \)
- \(\text{H}_2 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{H} \)
- \(\text{H} + \text{H}_2\text{S} \rightarrow \text{HS} + \text{H}_2 \)

Within the framework of:

- Cometary chemical inventory
- ‘Complex’ organic molecule precursors
- Water formation
- Sulfur chemistry

H + H$_2$O$_2$ Gas vs. Clusters (I)

DFT: MPW1B95 / MG3S

Lamberts et al. (2016)
$H + H_2O_2$

Gas vs. Clusters (II)

$E_{\text{act.}} \approx 2910 - 3200 \text{ K}$

Lamberts et al. (2016)
H + H$_2$O$_2$ Clusters vs. Surface (I)

Lamberts et al. (2017)

DFT: MPW1B95 / MG3S
FF: TIP3P
Clusters vs. Surface (II)

\[k_{\text{reac}} = 10^{12} e^{-2a/h\sqrt{2\mu E_{\text{act}}}} \]

\(E_{\text{act}} \approx 2740 - 3065 \text{ K} \)

Lamberts et al. (2017)
H + H₂O₂

Surface vs. Bulk (I)

DFT: MPW1B95 / MG3S
FF: TIP3P

Lamberts et al. (2017)
$H + H_2O_2 \quad \text{Surface vs. Bulk (II)}$

$E_{\text{act.}} \approx 2500 - 2840 \text{ K}$

Lamberts et al. (2017)
H$_2$ + OH Surface (I)

DFT: BHLYP / def2-SVPD
FF: TIP3P

Meisner et al. (2017)
H₂ + OH Surface (II)

$E_{\text{act.}} \approx 2700 – 2900 \text{ vs. } 2935 \text{ K}$

Meisner et al. (2017)
H + H$_2$S Gas phase vs. Clusters (I)

DFT: MPWB1K / def2-TZVP

Lamberts et al. (2017) in prep.
Diffusion and binding energies?

\[R_{LH} = P_{react} \cdot R_{diff} \]

\[= \frac{k_{react}}{k_{react} + k_{diff,A} + k_{diff,B}} \cdot \frac{k_{diff,A} + k_{diff,B}}{N_{sites}} \cdot n_A \cdot n_B \]

Combination of activation and binding energy determines if a reaction is limited by diffusion: what about binding energy distributions?

Song et al. (2016, 2017), Senevirathne et al. (2017), Ásgeirsson et al. (2017)
Lessons learned

- Water ice: may impact on barrier height and width, may decrease the barrier
- Hydrogen bonds: restricted orientations determine binding energy
- Binding energies: a large spread
- Rectangular barrier: often underestimates rate constants, often results in error in the KIE
- Rate constants available for roughly a dozen reactions!
Thank you!

April Cooper
Sonia Álvarez Barcia

Computational Chemistry Group Stuttgart
Institut für Theoretische Chemie Stuttgart

University of Stuttgart
Germany

Alexander von Humboldt Stiftung/Foundation

European Research Council
Established by the European Commission

BWForCluster Justus

646717 TUNNELCHEM
Lessons learned

• Water ice:
 - may impact on barrier height and width
 - may decrease the barrier

• Hydrogen bonds:
 - restricted orientations
 - determine binding energy

• Binding energies:
 - a large spread

• Rectangular barrier:
 - often underestimates rate constants
 - often results in error in the KIE

• Rate constants available for roughly a dozen reactions!
In a nutshell

Imaginary F theory: $k \propto \text{Im}(F) = \frac{\text{Im}(Q)}{\text{Re}(Q)}$

Transition state theory: $k \propto \frac{Q_{TS}}{Q_{RS}}$

$Q_{TS} = tr\left[e^{-\beta H}\right] = \oint Dx\ e^{-\frac{1}{\hbar}S_E[x]} \rightarrow \text{path integral formulation}$

x that minimizes $S_E[x]$ is ‘the instanton’, discretized: P segments in $3N$ dimensions

This ring-polymer with $k=k(T)$ can be seen as wrapped around the barrier

Deviations from the most-likely tunneling path: harmonic approximation

Hydrogenation of H_2O_2

- Experiments show a kinetic isotope effect
 - $\text{H}_2\text{O}_2 + \text{H}$ vs. $\text{H}_2\text{O}_2 + \text{D}$
 - $\text{D}_2\text{O}_2 + \text{H}$ vs. $\text{D}_2\text{O}_2 + \text{D}$

- In models
 - Rectangular barrier approximation
 - Eckart barrier approximation

$P_{\text{react}} \propto e^{-2a/\hbar\sqrt{2\mu E_{\text{act}}}}$

Taquet et al. (2013), Oba et al. (2014)
Surface formation of water

Radical-radical reactions:
barrierless

Radical-neutral reactions:
tunneling!

$H + H_2O_2 \rightarrow H_2O + OH : E_{act.} \approx 26 \text{ kJ/mol}$

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction 1 (H + H_2O_2 \rightarrow H_2O + OH)</th>
<th>Reaction 2 (H + H_2O_2 \rightarrow HO_2 + H_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ/mol</td>
<td>kJ/mol</td>
</tr>
<tr>
<td>CCSD(T)-F12 / VTZ-F12</td>
<td>25.5</td>
<td>39.4</td>
</tr>
<tr>
<td>ic-MRCCSD(T) / cc-pVQZ</td>
<td>24.9</td>
<td>38.3</td>
</tr>
<tr>
<td>Ellingson et al. (2007)</td>
<td>27.2</td>
<td>41.4</td>
</tr>
<tr>
<td>MPW1B95 / MG3S</td>
<td>26.5</td>
<td>23.7</td>
</tr>
<tr>
<td>M05-2X / MG3S</td>
<td>45.9</td>
<td>39.7</td>
</tr>
<tr>
<td>PWB6K / MG3S</td>
<td>35.9</td>
<td>35.4</td>
</tr>
<tr>
<td>B3LYP / MG3S</td>
<td>11.2</td>
<td>8.1</td>
</tr>
<tr>
<td>B3LYP / def2-TZVPD</td>
<td>10.8</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Energies in kJ/mol and Kelvin, without ZPE corrections, no dispersion correction.
Kinetic Isotope Effect

All KIE’s calculated at 50 K

<table>
<thead>
<tr>
<th>System</th>
<th>Instanton theory</th>
<th>Eckart Barrier</th>
<th>Rectangular Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eley-Rideal / bimolecular</td>
<td>197</td>
<td>27</td>
<td>6945</td>
</tr>
<tr>
<td>Langmuir-Hinshelwood / unimolecular</td>
<td>229</td>
<td>60</td>
<td>7033</td>
</tr>
</tbody>
</table>

Experimental KIE = 30 at 15 K, but ... includes diffusion!