A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry

Romane Le Gal

CfA

Post-doctoral fellow (CfA-Harvard) in Karin Oberg's group

Collaborators for this work:

E. Herbst (UVa), G. Dufour (NASA Goddard),P. Gratier (LAB), M. Ruaud (NASA Ames),T. H. G. Vidal (LAB), and V. Wakelam (LAB)

A new study of the chemical structure of the Horsehead nebula:

the influence of grain-surface chemistry

A&A 605, A88 (2017) DOI: 10.1051/0004-6361/201730980 © ESO 2017

Astronomy Astrophysics

A new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry

R. Le Gal¹, E. Herbst¹, G. Dufour^{2, 3}, P. Gratier², M. Ruaud^{2, 4}, T. H. G. Vidal², and V. Wakelam²

¹ Departments of Chemistry and Astronomy, University of Virginia, McCormick Road, Charlottesville, VA 22904, USA e-mail: romane.legal@virginia.edu

² Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France

³ NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USA

⁴ NASA Ames Research Center, Moffett Field, CA 94035, USA

Outline

Context

- Detection of a wide variety of molecules
 - in the Horsehead nebula

Our study

- Model developed: gas-grain chemistry
- Results: comparison with observations

Nearby ≈ 400 pc (Anthony-Twarog 1982) Nearly edge-on (Abergel et al. 2003)

σ Orionis O9.5 star

Nearby ≈ 400 pc (Anthony-Twarog 1982) Nearly edge-on (Abergel et al. 2003)

Credit: ESO

σ Orionis O9.5 star

 $\label{eq:Nearby} $$ $$ 400 \mbox{ pc (Anthony-Twarog 1982)}$$$ Nearly edge-on (Abergel et al. 2003)$$$ with $$ $$ $$ $$ $$ $$ = 60 $$ $$ $$ $$ ISRF (Mathis et al. 1983; Habart et al. 2005)$$$$

≈3.5 pc

Credit: ESO

Nearby \approx 400 pc (Anthony-Twarog 1982) Nearly edge-on (Abergel et al. 2003) with $\chi = 60 \times ISRF$ (Mathis et al. 1983; Habart et al. 2005)

Credit: ESO+ V. Guzman

 $DCO^{+}(2-1)$ [K.km/s]

Credit: ESO+ V. Guzman

 $DCO^{+}(2-1)$ [K.km/s]

Credit: ESO+ V. Guzman

Credit: ESO+ V. Guzman

Romane Le Gal – KIDA 2017 – Sept. 29, 2017

A shielded, dense core (Pety+ 2007) T ≈ 20 K

Credit: ESO+ V. Guzman

Romane Le Gal – KIDA 2017 – Sept. 29, 2017

• Two positions observed with the IRAM 30 m telescope

- Two positions observed with the IRAM 30 m telescope
- Aim: detailed comparison of these two different environements: UV-shielded and UV-illuminated

- Two positions observed with the IRAM 30 m telescope
- Aim: detailed comparison of these two different environements: UV-shielded and UV-illuminated
 - => 30 species + their isotoplogues from small to complex organics up to 7 atoms

- Two positions observed with the IRAM 30 m telescope
- Aim: detailed comparison of these two different environements: UV-shielded and UV-illuminated
 - => 30 species + their isotoplogues from small to complex organics up to 7 atoms

Organic molecules and precursors	Nitriles	Small hydrocarbons	F-bearing molecules
НСО	CH ₃ CN	CCH	CF^+
H_2CO	HČ ₃ N	$1-C_3H$	
CH ₃ OH	C ₃ N	$c-C_3H$	
HCŎOH	0	$1-C_3H_2$	
CH_2CO		$c-C_3H_2$	
CH ₃ CHO		$1-C_3H^{+}$	
CH ₃ CCH		C C	

A new astrochemical model

Context

• Detection of a wide variety of molecules

in the Horsehead nebula

• Our study

- Model developed: gas-grain chemistry
- Results: comparison with observations

0D model:

0D model:

0D model:

0D model:

0D model:

T = 10 K, n_H = 2e4 cm⁻³, A_V = 30 mag, ζ=5e-17s⁻¹

> Chemical network of Vidal+ 2017

OD model: chemical evolution during 1e6 yr of a starless dense cloud with

Nautilus (Ruaud+2016)

Physical structure:

temperature and density profiles Meudon PDR code (Le Petit+ 2006)

T = 10 K, $n_{\rm H} = 2e4 \text{ cm}^{-3},$ $A_V = 30 \text{ mag},$ $\zeta = 5e - 17s^{-1}$

> Chemical network of Vidal+ 2017

OD model: chemical evolution during 1e6 yr of a starless dense cloud with Nautilus (Ruaud+2016)

Physical structure:

temperature and density profiles Meudon PDR code (Le Petit+ 2006)

1D model:

chemical evolution during 1e6 yr with Nautilus in 1D mode

T = 10 K, $n_{\rm H} = 2e4$ cm⁻³, $A_V = 30$ mag, ζ=5e-17s⁻¹

Chemical network of Vidal+ 2017 **OD model:** chemical evolution during 1e6 yr of a starless dense cloud with Nautilus (Ruaud+2016)

Physical structure:

temperature and density profiles Meudon PDR code (Le Petit+ 2006)

1D model:

chemical evolution during 1e6 yr with Nautilus in 1D mode Species

He

Ν

0

Η

H₂ C⁺

 S^+

Si⁺

Fe⁺

Na⁺

 Mg^+

 \mathbf{P}^+

 Cl^+

F

0D model

1.00(-1)

7.95(-5)

3.02(-4)

0.80

0.10 1.38(-4)

3.50(-6)

1.73(-8)

1.70(-9)

2.30(-9)

1.00(-8)

9.33(-10)

1.00(-7)1.80(-8)

From Goicoechea+ 2006

T = 10 K, n_H = 2e4 cm⁻³, A_V = 30 mag, ζ=5e-17s⁻¹

> Chemical network of Vidal+ 2017

OD model: chemical evolution during 1e6 yr of a starless dense cloud with Nautilus (Ruaud+2016)

Physical structure:

temperature and density profiles Meudon PDR code (Le Petit+ 2006)

1D model:

chemical evolution during 1e6 yr with Nautilus in 1D mode

From Goicoechea+ 2006

chemical evolution during 1e6 yr of a starless dense cloud with Nautilus (Ruaud+2016)

Physical structure:

temperature and density profiles Meudon PDR code (Le Petit+ 2006)

1D model:

chemical evolution during 1e6 yr with Nautilus in 1D mode

From Snow+ 2007

T = 10 K,

 $n_{\rm H}$ = 2e4 cm⁻³,

 $A_{v} = 30 \text{ mag},$

ζ=5e-17s⁻¹

Chemical

network of

Vidal+ 2017

Physical structure

Results: modeled abundances vs observations (I)

Le Gal et al., A&A 605, A88 (2017)

Results: modeled abundances vs observations (II)

Le Gal et al., A&A 605, A88 (2017)

Results: modeled abundances vs observations (III)

Le Gal et al., A&A 605, A88 (2017)

Results: modeled abundances vs observations (IV)

Le Gal et al., A&A 605, A88 (2017)

Results: modeled abundances vs observations (V)

Le Gal et al., A&A 605, A88 (2017)

Results: modeled abundances vs observations (V)

- CF^+ + Photon \longrightarrow F + C⁺ (Guzman et al. 2012),
- HF + C⁺ \longrightarrow H + CF⁺ (Neufeld et al. 2005; Guzman et al. 2012),
- $CF^+ + e^- \longrightarrow C + F$ (Novotny et al. 2005; Neufeld & Wolfire 2009; Guzman et al. 2012),
- $F + H_2 \longrightarrow HF + H$ (Tizniti et al. 2014).

Summary & future works

Summary:

Our time-dependent gas-grain chemistry model:

- OD model => initial starless molecular cloud = birth place of the σ Ori star, with Nautilus
- 1D model => takes into account the FUVflux from the star impinging the Horsehead and the physical structure
- Investigate the chemistry and the chemical timescale impact further:
 - Grain-chemistry needed
 - Longer chemical timescale at the Core
 - Chemical desorption vs photodesorption

Summary & future works

Summary:

Our time-dependent gas-grain chemistry model:

- OD model => initial starless molecular cloud = birth place of the σ Ori star, with Nautilus
- 1D model => takes into account the FUVflux from the star impinging the Horsehead and the physical structure
- Investigate the chemistry and the chemical timescale impact further:
 - Grain-chemistry needed
 - Longer chemical timescale at the Core
 - Chemical desorption vs photodesorption

Future works:

- Further investigate the chemical desorption probability
- Explore other PDR
- Compare our **predictive** results with the coming JWST data

o/p chemistry of H₂CO

Summary & future works

Summary:

Our time-dependent gas-grain chemistry model:

- OD model => initial starless molecular cloud = birth place of the σ Ori star, with Nautilus
- 1D model => takes into account the FUVflux from the star impinging the Horsehead and the physical structure
- Investigate the chemistry and the chemical timescale impact further:
 - Grain-chemistry needed
 - Longer chemical timescale at the Core
 - Chemical desorption vs photodesorption

Future works:

- Further investigate the chemical desorption probability
- Explore other PDR
- Compare our **predictive** results with the coming JWST data

o/p chemistry of H₂CO

Thanks for your attention!