DATABASE

Astrochemical conference KIDA2017 26-29 Sep 2017 Bordeaux (France)

KINETIC DATABASE FOR ASTROCHEMISTRY

GAS PHASE KINETICS OF OH RADICAL WITH COMS AT TEMPERATURES OF THE INTERSTELLAR MEDIUM (T = 22-107 K)

Elena Jiménez¹

A. Canosa², A. J. Ocaña¹, S. Blázquez¹, A. Potapov³, B. Ballesteros¹, M. Antiñolo², J. Albaladejo¹

- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA). Universidad de Castilla-La Mancha (UCLM). 13071 Ciudad Real, SPAIN
- 2. Département de Physique Moléculaire, Institut de Physique de Rennes, UMR 6251 CNRS - Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
- Laborastrophysikgruppe des Max-Planck-Instituts f
 ür Astronomie am Institut f
 ür Festkörperphysik, Friedrich-Schiller-Universit
 ät Jena Helmholtzweg 3, 07743 Jena, Germany

1. What's included in KIDA for OH+COMs reactions?

Like in Chemistry, *organic molecules* are defined in *Astrochemistry* as molecules containing **C**, **H**, **O** and/or **N** atoms. Herbst & van Dishoeck (*Ann. Rev. Astron. Astrophys.* 47:427-480, 2009) suggested <u>that</u> molecules with 6 atoms or more can be considered as **complex organic molecules** (**COMs**).

Molecules i	edium or (Circumste	ellar Shells	s (as of 08	3/2017)	67 com	nlev mo							
	2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms		
		0.*		0. *		0.11								
	H ₂		C-03H	C5	C5H	C ₆ H	CH ₃ C ₃ N	CH ₃ U ₄ H	CH3C5N	HC ₉ N	с-Сене	HC ₁₁ N ?		
S	AIF	C ₂ H	/-C3H	C ₄ H	/-H ₂ C ₄	CH ₂ CHCN	HC(0)0CH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH ₃ C ₆ H	n-C ₃ H ₇ CN	C ₆₀ *		
	AICI	C ₂ O	C ₃ N	C ₄ Si	C ₂ H ₄ *	CH ₃ C ₂ H	CH ₃ COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	C ₂ H ₅ OCHO	i-C ₃ H ₇ CN	C ₇₀ *		
%/cdms/molecr	C2**	C ₂ S	C30	/-C3H2	CH ₃ CN	HC ₅ N	C ₇ H	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO	CH ₃ OC(0)CH ₃	C ₂ H ₅ OCH ₃ ?	C ₆₀ +*		
	СН	CH ₂	C ₃ S	c-C ₃ H ₂	CH ₃ NC	СН ₃ СНО	C ₆ H ₂	HC ₇ N	CH ₃ CHCH ₂ O 2016					
	CH+	HCN	C ₂ H ₂ *	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H						
	CN	НСО	NH ₃	CH ₄ *	CH ₃ SH	c-C ₂ H ₄ O	/-HC ₆ H*	CH ₃ C(0)NH ₂						
	со	HCO+	HCCN	HC ₃ N	HC ₃ NH ⁺	H ₂ CCHOH	CH ₂ CHCHO (?)	C ₈ H−						
de	CO+	HCS ⁺	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C ₆ H−	CH ₂ CCHCN	C ₃ H ₆						
uni-koeln.	СР	HOC+	HNCO	нсоон	NH ₂ CHO	CH ₃ NCO 2015	H ₂ NCH ₂ CN	CH ₃ CH ₂ SH (?)						
	SiC	H ₂ 0	HNCS	H ₂ CNH	C ₅ N	HC ₅ O 2017	CH3CHNH	CH ₃ NHCHO ? 2017						
0.1	HCI	H ₂ S	HOCO+	H ₂ C ₂ O	/-HC4H*									
astr	KCI	HNC	H ₂ CO	H ₂ NCN	/-HC ₄ N									
2	NH	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O									
\sim	NO	MgCN	H ₂ CS	SiH ₄ *	H ₂ CCNH (?)		Up to date, KIDA database has compiled the kin parameters for 24 reactions between OH radicals and							
\sim	NS	MgNC	H ₃ O ⁺	H ₂ COH ⁺	C₅N	I								
https:	NaCl	N ₂ H ⁺	c-SiC ₃	C₄H⁻	HNCHCN		molecule.							
	ОН	N ₂ O	CH3*	HC(0)CN										
	PN	NaCN	C ₃ N ⁻	HNCNH		Included in KIDA for \ge 6 atom								
	SO	OCS	PH ₃	CH ₃ O										

1. What's included in KIDA for OH+COMs reactions?

Astrophysical kinetic networks, such as KIDA database, propose modified Arrhenius expressions for the rate coefficients, k(T), in different T-ranges for use in astrochemical modelling:

$k(T) = \alpha \quad (T/300 \text{ K})^{\beta} \quad \exp(-\gamma/T)$

$OH + COM \rightarrow Products$ $k(T)$									
СОМ	T range In KIDA	Experimental Lowest T/ K	Reference						
C_2H_4	50-200	69	Taylor et al., PCCP, 2008 , 10, 422 - 437						
C_6H_6	<mark>200</mark> -1500	239	NIST kinetic database						
H ₂ CO	<mark>10</mark> -1500	202	NIST kinetic database						
CH₃CHO	298	58	Vohringer-Martinez et al. Science, 2007 , <i>315</i> , 497-501						
CH ₃ OH	<mark>10</mark> -300	22	Antiñolo et al. ApJ, 2016, 823:25, 1-8						
CH ₃ OCH ₃	<mark>250</mark> -1200	63	Shannon et al. PCCP, 2014 , 16, 3466-3478						
CH ₃ CH ₂ OH	not included	54	Caravan et al. J. Phys. Chem. A, 2015 , 119, 7130- 7137						

For ethylene (C_2H_4), methanol (CH_3OH), acetaldehyde (CH_3CHO), dimethyl ether (CH_3OCH_3) and ethanol (CH_3CH_2OH), there are experimental kinetic data at temperatures of the interstellar medium (*ca.* 10-100 K), but not for formaldehyde (H_2CO) and benzene (C_6H_6).

Need to measure k(T) at ISM temperatures for formaldehyde and close to 10 K for ethanol

E. Jiménez, B. Ballesteros, A. Canosa, T.M. Townsend, F.J. Maigler, V. Napal, B.R. Rowe, and J. Albaladejo., *Rev. Sci. Instrum.* 86(4), 045108-1 (2015)

2. Experimental technique: CRESU + PLP-LIF

In our group, the kinetics of some OH-reactions have been studied at T between 22 K and 107 K by the pulsed and continous CRESU (*Cinétique de Réaction en Ecoulement Supersonique Uniforme*-Reaction Kinetics in a Uniform Supersonic Expansion) technique.

Jiménez et al. (2015), Rev. Sci. Instr. 86, 045108-1

The gas mixture (buffer gas, COM and OHprecursor) is expanded through a Laval nozzle getting a uniform supersonic flow in T and gas density.

- Pulsed Laser Photolysis (PLP): $H_2O_2 + hv (\lambda = 248 \text{ nm}) \rightarrow 2 \text{ OH}(X^2\Pi)$
- Laser Excitation: $OH(X^2\Pi) + hv_{excit}(\lambda = 282 \text{ nm}) \rightarrow OH(A^2\Sigma^+)$
- Laser induced fluorescence (LIF) Detection: $OH(A^{2}\Sigma^{+}) \rightarrow OH(X^{2}\Pi) + hv_{LIF}(\lambda \sim 310 \text{ nm})$

Formaldehyde

Ocaña et al., ApJ (2017) accepted

22-107 K

Antiñolo et al. ApJ (**2016**) 823:25

22-64 K

Methanol

Ethanol

Ocaña et al., in prep.

22-107 K

Jiménez et al., PCCP

22-64 K

18 (**2016**) 2183

Acetone

Dimethyl ether

Preliminary results

22-64 K

5

RUAUD, M. ET AL (2015) T(K) = 10-300 🗸

Show/Hide those values

	Channels				T//0 5 1						D .	
					I(K) Formula			Δ _r H (kJ.mol-	0	Date		
	$H_2CO + OH \rightarrow H$		H ₂ O + HCO	10-300		Modified Arrhenius equation 🕄			$\Delta_r H_0 = -125.134$ $\Delta_r H_{298} = -127.666$		2015-02-19	
	$H_2CO + OH \rightarrow 1$		н + нсоон	10-300		Modified Arrhenius equation 🕄		ion 🔒	$\Delta_r H_0 = 659.09$ $\Delta_r H_{298} = -88.632$		2015-02-19	
Show details	See/hide publications											
Channel			T(K)	k(10) cm ³ s ⁻¹	α		β	Ŷ		Fo	g	Type uncert
H ₂ CO + OH	\rightarrow H ₂ O + HCO		10-300	7.70e-11	1.00E-1	1	-6.00E-1	0.00	E+0	0	0	lognormal
			Method: Reviews	and Evaluations								

 $k(T=10-300 \text{ K}) = 1 \times 10^{-11} (T/300 \text{ K})^{-0.6}$

 $k(T=10 \text{ K}) = 7.7 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$

3. Kinetics of the OH + $H_2CO \rightarrow H_2O$ + HCO reaction

3. Kinetics of the OH + $H_2CO \rightarrow H_2O$ + HCO reaction

Implications in the Gas-Phase Formation of IS HCO

A **pure gas-phase chemical model** for a **cold dark molecular cloud** (T = 10 K, $n_H = 2 \times 10^4$ cm⁻³) was run by M. Agúndez and J. Cernicharo to model the time evolution of the relative abundances of H₂CO, OH and HCO radicals.

- For an evolving time of (0.2-1.0)×10⁶ yrs the modelled HCO abundances are in agreement with observations.
- The OH + H₂CO reaction accounts for a few percent of the total HCO production rate in dark clouds.

Origine of HCO in Prestellar Cores: Bacmann & Faure, A&A.,587, A130 (2016)

$$\frac{[HCO]}{[H_2CO]} = 8\frac{k_1}{k_2}$$

OH + H₂CO \rightarrow HCO + H₂O HCO + HX⁺ \rightarrow HCOH⁺ + X with $k_1 = 10^{-11}$ cm³molec⁻¹s⁻¹

$$\frac{[HCO]}{[H_2CO]} = 0.0016 \approx 0.01 \text{ obs.}$$

IF $k_1(10 \text{ K}) = 4 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$ observations can be reproduced by modeling. Agrees with the present work extrapolation to 10 K: $2.6 \times 10^{-10} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$

 In other environments such as PDRs and diffuse clouds, it is worth checking if the reaction can provide a significant contribution to the HCO formation

4. Kinetics of the OH + CH₃CH₂OH reaction

Branching ratios

The reaction of OH with ethanol can proceed by H-abstraction:

- At T≥200 K, channel (2b) forming CH₃CHOH radicals was calculated to be the major reaction pathway, accounting for 85-90%.
- Theoretical branching ratios for channels forming CH₃CH₂O (2a) and CH₂CH₂OH (2c) radicals <u>slightly increase</u> from 500 to 1500 K (Galano et al. and Sivaramakrishnan et al.).
- Caravan *et al. (J. Phys. Chem. A*, 2015, 119, 7130) suggested, based on the OH+CH₃OH reaction, that at low temperatures (T=54-148 K) the branching ratio for reaction 2a is expected to be the <u>predominant channel</u>. They made an attempt to detect CH₃CH₂O radical, but it was unsuccessful.

Need to measure or compute branching ratios at 10-100 K

4. Kinetics of the OH + CH₃CH₂OH reaction

Previous Low-temperature Kinetics (T=54-148 K)

Caravan et al. determined the rate coefficients for the OH-reaction with ethanol between 54 and 148 K using the CRESU technique, observing:

- / Pressure (i.e. gas density, n) dependence of k(T) at (82-89 K) and (133-148 K).
- At 54 K, no dependence of k(T) with *n* was observed.
- •/ They reported zero pressure *k* fitting their data by an extended Lindemann-Hinshelwood expression:

 $k_{n \to 0}$ (82-91 K) = (2.7±0.8)×10⁻¹¹ cm³ s⁻¹ $k_{n \to 0}$ (133-148 K) = (6.2±8.1)×10⁻¹² cm³ s⁻¹

The authors explained that dependence by the presence of two reaction channels:

Reaction co-ordinate

Caravan et al. J. Phys. Chem. A, **2015**, 119, 7130

4. Kinetics of the OH + CH_3CH_2OH reaction

New Low-temperature Kinetics (Preliminary results at T=22-107 K)

The experimental data are not yet published and therefore they are not available for public use.

We apologize for the inconvenience

Acknowledgements

FUNDING

Thank you for your attention

