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Why	develop	chemical	models?

• Chemical	models	represent	an	attempt	to	
understand	the	chemistry	occurring	in	
assorted	sources	and	use	this	understanding	
to:

• 1.		help	determine	the	physical	conditions	of	
the	source	as	well	as	its	age,

• 2.		improve	our	knowledge	of	exotic	chemical	
processes

• 3.		predict	how	large	molecules	can	grow.
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Some Model Parameters

• Temperature	(gas	and	grain	can	be	different)
• Density
• Visual	extinction	(optical	depth)
• Elemental	abundances	in	gas/mantle
• Grain	size	or	size	distribution
• Gas-to-dust	ratio
• Accretion	fraction
• Initial	abundances	of	molecules
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Methods of Solution of Chemical Abundances

• Solution of stiff sets of kinetic differential 
equations involving both gaseous and dust 
particle species, coupled by adsorption and 
desorption.  dni/dt = formation - destruction

• Stochastic (probabilistic) and Monte Carlo 
approaches, especially for small numbers of 
reactive species on dust particles; e.g. less 
than one.

• Modified equations to take into account some 
aspects of stochastic models.



Types of Models (Basic)

• Cold	cores:	Homogeneous		(0-D)		but	pseudo-
time-dependent	

• Photon-dominated	regions	heterogeneous	(1-
D)	steady-state

• Hot	cores:		homogeneous	but	time-dependent	
(warm-up)

• Protoplanetary	disks:		Heterogeneous	(2-D)	
but	pseudo-time-dependent
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GAS PHASE PSEUDO-TIME-DEPENDENT MODEL OF COLD CORE

Initial conditions:  atoms + H2

Best agreement at 
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With accretion, but without desorption:

+ ICE BUILD-UP……



General Problems for Chemical Simulations

• 1.  Heterogeneous and/or time-dependent physical conditions, 
possibly requiring three-dimensional magneto-hydrodynamics.

• 2. Uncertain role of shocks and turbulence.

• 3.  New high spatial resolution studies (e.g. with ALMA, NOEMA) 
require explanations of differing distributions of similar species.

• 4. What reactions to include?  Has come about historically. Basic 
chemistry now in datasets such as KIDA, Nautilus, UDFA, etc.  
although gas-phase emphasized. Sensitivity analyses recently 
extended for first time to surface chemistry.



Hincelin et al. 2013

A young protoplanetary 
disk obtained by 
hydrodynamic code using 
the trajectory approach.

The Role of 3D 
Hydrodynamics



Gas-Phase Reactions

• 1.		Ion-neutral:   C+ + C2H2 à C3H+ + H

• 2.  Dissociative recombination:  H3O+ + e à OH + 2H

• 3.  Radical-neutral:  CN  +  C2H2 à HC3N + H
• 4.   Radiative association:  CH3

+ + H2 à CH5
+ + hυ

•
• As temperature increases, more reactions with 

barriers and endoergicities need to be included.                         
• At low temperatures (10 K), tunneling can be 

important, as in OH + CH3OH à H2O + CH3O



Some Gas-phase Chemical Problems Remaining

• 1.  Low (10 K) and high (1000 K) temperatures not well 
studied.  Extrapolations to low temperature fragile.

• 2.  Radiative association and radiative attachment 
barely studied at all.

• 3.  Role of tunneling may be greater than thought.
• 4.   Explanation of saturated COMs in cold sources 

(CH3OCH3; HCOOCH3 & isomers); neutral-neutral vs 
ion-neutral with important role of ammonia.



.

Formed on grains

Balucani+ (2015)  low temperature neutral-neutral 
reactions

Neutral-Neutral Synthesis of Dimethyl ether and Methyl Formate

Radiative association
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Rate Equation for Diffusive 
Reaction on Surface

dngr (A)
dt

= kBCngr (B)ngr (C)− kADngr (A)ngr (D)

−kdesngr (A)+ kadsn(A)



Surface	Diffusive	Reactions

• Low	temperature:		atom	+	molecule	(	T	<	30	K)
• e.g.			H		+		CO		à HCO	(despite	barrier)
• leads	via	three	subsequent	reactions	to	methanol.

Rising	temperature:	radical- radical	(T	<	100	K)
• e.g.		HCO	+	CH3O		à HCOOCH3

• (At	higher	temperatures,	thermal	desorption	occurs.	
Many	such	reactions	in	Garrod et	al.	(2008)	model	of	
hot	core	chemistry.)
High	temperatures	(require	chemisorption)



From Garrod & Herbst (2006): note that COMs are not 
produced until 30 K. Radicals formed by photons.

Warm-up Models to 200 K (0D)

COMs



SOME REMAINING GRAIN PROBLEMS

• 1.		Relative importance of Eley-Rideal and Langmuir-Hinshelwood 
mechanisms. 

• 2.  Radical-radical association (recombination)  reactions poorly 
studied.

• 3. How to treat bulk mantle chemistry in addition to surface 
chemistry.

• 4.    Relation between diffusive barrier and desorption energy. 
Ratio seems to be becoming more uncertain.

• 5.    Role of barriers, including tunneling. Possible competition 
between diffusive barriers for chemical reactions with their 
own activation energy. 

• 6. Uncertainties in rates of non-thermal desorption at low 
temperatures (photodesorption, reactive desorption).



Non-thermal	Desorption

• Photodesorption:	a	variety	of	mechanisms	
with	results	of	desorption	per	photon	rates	
from	10(-3)	to	less	than	10(-5)	and	
competitive	role	of	intact	photodesorption	vs	
photodissociation.

• Reactive	desorption:		known	to	occur,	but	high	
uncertainty	in	results.		New	result	for	H	+	O3
on	compact	water	(He	et	al.)	of	11%	
independent	of	temperature.



Linnartz+2016: atom-radical + radical-radical (T = 10-20 K?)  
Thermal conditions; no photons.

Nearest-neighbor surface 
chemistry???

Vertical 
reactions?



Rate Processes:  Two Phase vs. Three Phase
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Bulk Mechanisms (Uncertain)

• 1.		Inside	pores

• 2.			substitutional

• 3.			interstitial:	sites	of	weak	binding.

• 4.				Vertical	(chain)	reactions	



Model of Competition

Chemical activation barrier

Diffusion 
barrier

Ea < Eb means that tunneling under the 
activation energy is more likely than 
tunneling under the diffusion barrier.



General	Problems	With	Rate	Equations

• a)	inaccurate	treatment	of	random	walk;	
problem	known	as	“back	diffusion”

• b)	overestimate of	rate	in	“accretion	limit”	
where	average	number	of	reactive	particles	
less	than	unity	and	discreteness and	
fluctuations important	(Tielens)

• c)	cannot	completely	take	into	account	
microscopic structure	of	surface	(e.g.	
roughness)	and	internal	ice	layers



CTRW	(MICROSCOPIC,	kMC)	APPROACH
Chang,	Cuppen	&	Herbst	(2005)

• A	Monte	Carlo	approach	in	which	the	actual	
positions	of	individual	species	on	a	lattice	are	
followed	with	time.	Can	use	to	follow	reactions	
(LH,ER)	and	mantle	build-up.

A

B

C



Problems with MC Approaches

• 1.		Must	run	stochastic	approaches	for	both	the	
grain	and	gas	phases.

• 2. macroscopic-macroscopic	most	efficient;	
macroscopic-microscopic	least.	For	latter,	can	
only	run	about	105 yr	for	cold	cores.

• 3.			Cannot	treat	H2 on/in	grains	easily.
• 4.			Currently,	best	solutions:	Vasyunin,	Chang	
approaches



Accomplishments	

• Can	reproduce	chemistry	at	least	partially	in	
most	sources	studied	and	can	at	times	even	
be	predictive.	

• Has	helped	to	understand	some	of	the	details	
of	stellar	evolution.

• Has	actually	enhanced	our	knowledge	of		
chemical	kinetics,	especially	at	low	
temperature.		
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